Contents lists available at ScienceDirect

Materials Letters

journal homepage: www.elsevier.com/locate/matlet

Synthesis and characterization of Co_3O_4/RuO_2 composite nanofibers via electrospinning

Sang-Yong Jeong^a, Hyo-Jin Ahn^b, Tae-Yeon Seong^{a,*}

^a Department of Materials Science and Engineering, Korea University, Seoul 136-713, Republic of Korea

^b Department of Materials Science and Engineering, Seoul National University of Technology, Seoul 139-743, Republic of Korea

ARTICLE INFO

Article history: Received 26 July 2010 Accepted 7 October 2010 Available online xxxx

Keywords: Co₃O₄ RuO₂ Nanofiber Composite Electrospinning

1. Introduction

One dimensional (1-D) nanostructure materials are of increasing interest because of the unusual and unique properties [1,2]. To produce 1-D nanostructure materials for specific applications, different synthetic methods, e.g., chemical vapor deposition (CVD) [3], hydrothermal synthesis [4], electrodeposition and sol-gel template synthesis in an anodic alumina oxide template [5,6], have been employed. Among these synthetic methods, electrospinning (a drawing process based on electrostatic interactions) has received wide attention because of its simple process and the controllability of the morphology and surface topology of electrospun nanofibers (NFs) [7,8].

Recently, 1-D nanostructured transition metal oxides, such as RuO_2 nanoneedles [9], Co_3O_4 nanowires [10] and VO_2 nanowires [11], have been widely studied. Composite oxide nanostructures, such as ZnO nanowire–CdO nanocomposites [12], TiO_2 – RuO_2 composite nanorods [13], and WO_3 – TiO_2 composite nanotubes [14], were also synthesized. In addition, some metal oxide NFs [15–17] were synthesized by electrospinning. However, the composite NFs of transition metal oxides have not been extensively investigated. In particular, for Co_3O_4 and RuO_2 materials which are important for electrochromic [18] and electrochemical applications [19], their composite thin films [20] and nanoparticles [21] were synthesized. However, detailed works on the synthesis of the 1-D nanostructures of Co_3O_4 and RuO_2 are still lacking. In this work, we synthesized

ABSTRACT

 Co_3O_4 -RuO₂ composite nanofibers (NFs) were synthesized by an electrospinning method. Scanning electron microscopy and high-resolution transmission electron microscopy (HRTEM) examinations show that all the synthesized NFs have uniform surface morphology and their diameters are in the range of ~30-~70 nm. X-ray diffraction (XRD) results show that crystalline Co_3O_4 phase and RuO_2 phase coexist in the composite NF matrix which is confirmed by X-ray photoemission spectroscopy. In addition, the HRTEM energy-dispersive X-ray spectroscopy mapping results show that the Co_3O_4 and RuO_2 phases are uniformly distributed across the NF matrix.

© 2010 Elsevier B.V. All rights reserved.

Co₃O₄-RuO₂ composite NFs by electrospinning and characterized their structural properties. The composite NFs are polycrystalline and are composed of uniformly distributed spinel Co₃O₄ and rutile RuO₂ phases.

2. Experiments

Starting metal precursor dissolved in de-ionized (DI) water was prepared using cobalt acetate tetrahydrate $(Co(CH_3CO_2)_2 \cdot 4H_2O_1)$ Aldrich) and ruthenium chloride hydrate (RuCl₃·xH₂O, Aldrich). Poly(vinylpyrrolidone) (PVP, Aldrich, Mw = 1,300,000 g/mol) was dissolved in ethanol. Each metal precursor and PVP solutions were subsequently mixed by a volume ratio of 1:1 and continuously stirred at room temperature (RT) for 6 h. Then, the Co metal precursor/PVP and Ru metal precursor/PVP solutions were mixed by controlling the volume of each solution to produce a mixed solution having an atomic ratio (Co:Ru) of 1:1, followed by stirring at RT for 3 h. For comparison, single Co metal precursor/PVP and single Ru metal precursor/PVP solutions were also prepared. The precalculated amounts of the metal precursors were controlled to be ~7 wt.% according to both single and mixed compositions, and the amounts of PVP were kept to be ~6 wt.% of the total weight of the electrospinning solutions at all different compositions. A feeding rate was controlled to be 0.03 ml/h during electrospinning and a Si collector was vertically positioned at 6.5 cm away from the syringe needle under a constant potential of 5.5 kV to collect as-spun metal precursor/polymer NFs. The as-spun NFs were dried in an oven at 80 °C for 12 h. PVP and ligand were then removed from the NFs by calcination at 400 °C for 1 h in air, resulting in the formation of Co-oxide, Ru-oxide, and composite Co-Ru oxide NFs. The morphology and structure of the NFs were examined by field-

^k Corresponding author. Tel.: +82 2 3290 3288; fax: +82 2 3290 3584. *E-mail address*: tyseong@korea.ac.kr (T.-Y. Seong).

⁰¹⁶⁷⁻⁵⁷⁷X/\$ – see front matter s 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.matlet.2010.10.050

Fig. 1. SEM images of (a) the as-spun composite NFs, (b) calcinated Co-oxide NFs, (c) calcinated composite oxide NFs, and (d) calcinated Ru-oxide NFs.

emission scanning electron microscopy (FESEM, Hitach S-4700), highresolution transmission electron microscope (HREM, TECNAI G2 F30), and X-ray diffraction (XRD, Rigaku D/MAX2500V with a Cu K α radiation) analyses. The chemical bonding states of the NFs were studied by X-ray photoelectron spectroscopy (XPS, ESCALAB 250, VG Scientifics using an Al K α x-ray source). The composition of the NF was characterized by HREM energy-dispersive X-ray spectroscopy (EDS) using a JEOL JEM 2100F microscope equipped with an Oxford INCA energy EDS.

3. Results and discussion

Fig. 1 exhibits SEM images of the as-spun and annealed oxide NFs. SEM-energy-dispersive spectroscopy measurement (not shown) exhibited that the composite NFs after calcination at 400 °C contained

Fig. 2. HRTEM images obtained from (a) the Co-oxide, (b) composite, and (c) Ru-oxide NFs.

nearly the same amount of Co and Ru, namely, an atomic ratio (Co:Ru) of 1:1. Fig. 1(a) shows the as-spun composite NFs (~80–~150 nm in diameter). The as-spun single Co and Ru NFs also had similar morphologies and diameters (not shown). Fig. 1(b), (c), and (d) reveal the Co-oxide, composite oxide, and Ru-oxide NFs, respectively, after calcination. It is noted that calcination causes a reduction in their diameters by 53-63%, namely, all the NFs have diameters in the range of ~30-70 nm.

Fig. 2 shows HREM images obtained from the Co-oxide, composite, and Ru-oxide NFs. The HREM results reveal that all the NFs are polycrystalline. This is confirmed by transmission electron diffraction (TED) patterns as shown in the inset. The TED pattern from the Co-oxide NFs exhibits discontinuous diffraction rings consisting of diffraction spots, Fig. 2(a). However, those from the composite and Ru-oxide NFs show continuous diffraction rings, Fig. 2(b) and (c), respectively. The TED results indicate that the Co-oxide NFs contain larger nanoparticles (or nano-grains) as compared to the Ru-oxide and composite NFs. The exact reason for the different behaviours is not clearly understood at the moment.

Fig. 3 shows XRD plots obtained from all the NFs after calcination. For all the samples, the XRD results reveal a polycrystalline nature. The Co-oxide NFs are composed of the Co_3O_4 phase with a normal spinel structure, while the Ru-oxide NFs consist of the RuO_2 phase

Fig. 3. XRD $\theta-2\theta$ plots obtained from (a) the Co-oxide, (b) composite, and (c) Ru-oxide NFs.

Fig. 4. (a) The Co 2p and (b) Ru 3d core levels for the single and composite oxide NFs.

with a tetragonal rutile structure. The composite NFs contain both spinel Co_3O_4 and rutile RuO_2 phases. It is noted that the Co_3O_4 (311) and RuO_2 (101) peaks of the composite NFs are located at the same positions as those of the Co-oxide and Ru-oxide NFs, respectively, as marked by the dashed lines. This implies that they are not a $Co_xRu_yO_z$ ternary phase, but a mixture of Co_3O_4 and RuO_2 phases, namely, composite NFs form. This is further confirmed by XPS analyses, as described later.

Fig. 4(a) shows the Co 2*p* core level spectra for the single Co-oxide and composite NFs. Both the Co 2*p* spectra reveal the $2p_{3/2}$ peak positioned at ~780.0 eV, which is identified to be elemental Co in Co₃O₄ [22], indicating the presence of the Co₃O₄ phase. Fig. 4(b) shows the Ru 3*d* core level for the single Ru-oxide and composite NFs. Both of the Ru 3*d* spectra exhibit the $3d_{5/2}$ peak positioned at ~281.1 eV, which is identified to be elemental Ru in RuO₂ [23], also indicating the formation of the RuO₂ phase. The XPS results imply that the composite NFs are composed of a mixture of Co₃O₄ and RuO₂ phases, which is in good agreement with the XRD results (Fig. 3).

Fig. 5 shows TEM-EDS mapping data from the composite NF having an atomic ratio (Co:Ru) of 1:1. The EDS results reveal that Co and Ru atoms are uniformly distributed in the NF. This implies that the grains of Co₃O₄ and RuO₂ phases are uniformly distributed in the NF matrix. This also confirms that the composite NFs consisting of crystalline Co₃O₄ and RuO₂ phases are successfully synthesized by means of an electrospinning method.

4. Summary

We synthesized composite nanofibers (NFs) consisting of crystalline Co_3O_4 and RuO_2 phases by an electrospinning method and their

Fig. 5. TEM-EDS mapping data obtained from the composite NF having an atomic ratio (Co:Ru) of 1:1.

surface morphology, structural properties, and chemical compositions were characterized by means of SEM, HREM, XRD, XPS, and EDS. The SEM, XRD and HREM results showed that all the NFs have a crystalline phase and are in the range of \sim 30– \sim 70 nm in diameter. The EDS results exhibited that the Co₃O₄ and RuO₂ phases are uniformly distributed in the composite NFs. It is shown that the use of the electrospinning method for the synthesis of composite materials having 1-D nanostructures is simple and a powerful process.

Acknowledgement

This work was supported by the World Class University program through the National Research Foundation of Korea funded by the MEST (R33-2008-000-10025-0).

References

- [1] Lu W, Lieber CM. J Phys D Appl Phys 2006;39:R387–406.
- [2] Banerjee S, Dan A, Chakravorty D. J Mater Sci 2002;37:4261–71.
- [3] Wu JJ, Liu SC. Adv Mater 2002;14:215-8.
- [4] Cheng B, Samulski ET. Chem Commun 2004:986–7.
- [5] Xu DS, Shi XS, Guo GL, Gui LL, Tang YQ. J Phys Chem B 2000;104:5061-3.
- [6] Ji GB, Tang SL, Xu BL, Gu BX, Du YW. Chem Phys Lett 2003;379:484-9.
- [7] Li D, Xia YN. Adv Mater 2004;16:1151-70.
- [8] Agarwal S, Greiner A, Wendorff JH. Adv Funct Mater 2009;19:2863-79.
- [9] Subhramannia M, Balan BK, Sathe BR, Mulla IS, Pillai VK. J Phys Chem C 2007;111: 16593-600.
- [10] Li YG, Tan B, Wu YY. Nano Lett 2008;8:265-70.
- [11] Chen XY, Wang X, Wang ZH, Wan JX, Liu JW, Qian YT. Nanotechnology 2004;15: 1685-7.
- [12] Senthil K, Tak Y, Seol M, Yong KJ. Nanoscale Res Lett 2009;4:1329–34.
- [13] Chu SZ, Wada K, Inoue S, Hishita S, Kurashima K. J Phys Chem B 2003;107: 10180-4.
- [14] Cheng LF, Zhang XT, Liu B, Wang HZ, Li YC, Huang YB, et al. Nanotechnology 2005;16:1341–5.
- [15] Li D, Xia YN. Nano Lett 2003;3:555-60.
- [16] Guan HY, Shao CL, Wen SB, Chen B, Gong J, Yang XH. Mater Chem Phys 2003;82: 1002–6.
- [17] Lu XF, Liu XC, Zhang WJ, Wang C, Wei Y. J Colloid Interf Sci 2006;298:996-9.
- [18] Maruyama T, Arai S. J Electrochem Soc 1996;143:1383-6.
- [19] Kim HK, Seong TY, Lim JH, Cho WI, Yoon YS. J Power Sources 2001;102:167-71.
- [20] Li YH, Huang KL, Zeng DM, Liu SQ, Yao ZF. J Solid State Electr 2010;14:1205-11.
- [21] Liu Y, Zhao WW, Zhang XG. Electrochim Acta 2008;53:3296–304.
- [22] Barreca D, Massignan C, Daolio S, Fabrizio M, Piccirillo C, Armelao L, et al. Chem Mater 2001;13:588–93.
- [23] Wang G, Hsieh CS, Tsai DS, Chen RS, Huang YS. J Mater Chem 2004;14:3503-8.